N-type semiconductor - meaning and definition. What is N-type semiconductor
Diclib.com
ChatGPT AI Dictionary
Enter a word or phrase in any language 👆
Language:     

Translation and analysis of words by ChatGPT artificial intelligence

On this page you can get a detailed analysis of a word or phrase, produced by the best artificial intelligence technology to date:

  • how the word is used
  • frequency of use
  • it is used more often in oral or written speech
  • word translation options
  • usage examples (several phrases with translation)
  • etymology

What (who) is N-type semiconductor - definition

ONE THAT HAS BEEN DOPED, THAT IS, INTO WHICH A DOPING AGENT HAS BEEN INTRODUCED, GIVING IT DIFFERENT ELECTRICAL PROPERTIES THAN THE INTRINSIC (PURE) SEMICONDUCTOR
P-type semiconductor; N-type semiconductor; P-type crystals; N-type crystals; P-type silicon; N-type silicon; N-type (semiconductor); P-type (semiconductor); P-type doping

Extrinsic semiconductor         
An extrinsic semiconductor is one that has been doped; during manufacture of the semiconductor crystal a trace element or chemical called a doping agent has been incorporated chemically into the crystal, for the purpose of giving it different electrical properties than the pure semiconductor crystal, which is called an intrinsic semiconductor. In an extrinsic semiconductor it is these foreign dopant atoms in the crystal lattice that mainly provide the charge carriers which carry electric current through the crystal.
Intrinsic semiconductor         
PURE SEMICONDUCTOR WITHOUT ANY SIGNIFICANT DOPANT SPECIES PRESENT
I-type semiconductor; Undoped semiconductor
An intrinsic (pure) semiconductor, also called an undoped semiconductor or i-type semiconductor, is a pure semiconductor without any significant dopant species present. The number of charge carriers is therefore determined by the properties of the material itself instead of the amount of impurities.
NMOS logic         
IMPLEMENTS LOGIC GATES AND OTHER DIGITAL CIRCUITS
N-type Metal-Oxide-Semiconductor; N-type metal-oxide-semiconductor; N-MOS; N-type MOS
N-type metal-oxide-semiconductor logic uses n-type (-) MOSFETs (metal-oxide-semiconductor field-effect transistors) to implement logic gates and other digital circuits. These nMOS transistors operate by creating an inversion layer in a p-type transistor body.

Wikipedia

Extrinsic semiconductor

An extrinsic semiconductor is one that has been doped; during manufacture of the semiconductor crystal a trace element or chemical called a doping agent has been incorporated chemically into the crystal, for the purpose of giving it different electrical properties than the pure semiconductor crystal, which is called an intrinsic semiconductor. In an extrinsic semiconductor it is these foreign dopant atoms in the crystal lattice that mainly provide the charge carriers which carry electric current through the crystal. The doping agents used are of two types, resulting in two types of extrinsic semiconductor. An electron donor dopant is an atom which, when incorporated in the crystal, releases a mobile conduction electron into the crystal lattice. An extrinsic semiconductor which has been doped with electron donor atoms is called an n-type semiconductor, because the majority of charge carriers in the crystal are negative electrons. An electron acceptor dopant is an atom which accepts an electron from the lattice, creating a vacancy where an electron should be called a hole which can move through the crystal like a positively charged particle. An extrinsic semiconductor which has been doped with electron acceptor atoms is called a p-type semiconductor, because the majority of charge carriers in the crystal are positive holes.

Doping is the key to the extraordinarily wide range of electrical behavior that semiconductors can exhibit, and extrinsic semiconductors are used to make semiconductor electronic devices such as diodes, transistors, integrated circuits, semiconductor lasers, LEDs, and photovoltaic cells. Sophisticated semiconductor fabrication processes like photolithography can implant different dopant elements in different regions of the same semiconductor crystal wafer, creating semiconductor devices on the wafer's surface. For example a common type of transistor, the n-p-n bipolar transistor, consists of an extrinsic semiconductor crystal with two regions of n-type semiconductor, separated by a region of p-type semiconductor, with metal contacts attached to each part.